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Non-linear theory of unstable plane Poiseuille flow 
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Princeton University 

(Received 7 November 1968 and in revised form 6 January 1969) 

A theoretical study of plane Poiseuille flow is made using the full non-linear 
Navier-Stokes equations. The mathematical technique employed is to use a 
Fourier decomposition in the streamwise spatial variable, a Galerkin expansion 
in the lateral variable and numerical integration with respect to time. By 
retaining the non-linear terms, the limit cycle oscillations of an unstable (in 
a linear sense) flow are obtained. A brief investigation of the possibility of in- 
stability due to large (non-linear) disturbances is also made. The results are 
negative for the cases examined. Comparisons with results previously obtained 
by others from linear theory illustrate the accuracy and eficacy of the method. 

1. Introduction 
In  recent years there has been considerable interest in treating the non- 

linear behaviour of viscous flows which are unstable in the linear approximation. 
Such studies appear to be the most rational way of approaching ‘turbulence’, 
which may be considered to be the non-linear oscillations of an unstable laminar 
flow. Notable contributions have been made by Stuart (1960), Watson (1960) 
and Eckhaus (1965). Stuart and Watson used what may be termed in the present 
context a one-mode approximation while Eckhaus formally considered multi- 
mode expansions in terms of the eigenfunctions of the linear problem. Because 
usually only the f i s t  eigenfunction is available a t  considerable effort (see, for 
example, Lin (1955)), such multi-mode expansions are not directly useful for 
quantitative analysis. In the present paper the Galerkin method using a primitive 
model expansion is employed for plane Poiseuille flow. These primitive modes 
satisfy the boundary conditions of the problem but not the eigenfunction equa- 
tion. They are chosen a priori for their simplicity in mathematical manipulation. 
The analysis is carried through to the point of obtaining interesting analytical 
and numerical results. Galerkin’s method has been widely used in many physical 
contexts for non-linear oscillations and also for linear problems in viscous flow, 
see Gallagher & Mercer (1962). 

An alternate and popular technique is the method of finite differences. Thomas 
(1953) pioneered its use for the linear problem. Most recently Dixon & Hellums 
(1967) have considered the non-linear problem using finite differences. While 
some criticism of details of their analysis may be made, they have shown the 
basic feasibility of such a, method. Generally speaking, however, Galerkin’s 
method is to be preferred (for simple flow geometries) because the choice of the 
modal expansion is at  the disposal of the investigator. A suitable choice of 
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modes based upon some insight into the physical nature of the problem will 
often permit analytical and numerical results to be obtained more readily than 
via a finite-difference procedure. Indeed this is the basis of the Stuart-Watson 
approach. 

An earlier paper by Meksyn & Stuart (1951) is relevant to the present study 
in that it treats plane Poiseuille flow. They solve simultaneously the usual (linear) 
perturbation equation plus a (non-linear) mean flow equation to investigate the 
effect of large initial disturbances on the stability of the flow. 

This approach is suitable for analytical approximation but is perhaps less 
systematic than that adopted here. Also it is not suitable for obtaining informa- 
tion about the non-linear fluid oscillations themselves which is the principal 
interest here. 

After the present work was completed the work of Grosch & Salwan (1968) 
became available wherein the tiinear problem is treated by a method similar 
to that employed here. They also drew attention to the earlier work by Dolph & 
Lewis (1 958), who treated the linear problem and anticipated the usefulness of 
the modal expansion (Galerkin) approach for the non-linear problem. 

2. Problem formulation 

in terms of a perturbation stream function is 
The equation of motion for a two-dimensional, incompressible viscous flow 

The velocity components are given by 
all. 

UT = ZLSU = 5+-, 
aY 

and 

The mean steady velocity profile, 5, whose stability we examine, is given by 

(2.3) 

i.e. we treat plane Poiseuille flow. The non-dimensionalization is such that y 
and x are normalized by channel height, h, and the velocities by four times the 
mid-channel mean velocity. Note that, from (2.3), 

- u = y- y2; 

ZL=$ at y = + .  (2.4) 
The Reynolds number is therefore 

Vh RS-, 
V 

where V is four times U at y = 4 and v the kinematic viscosity. 
The boundary conditions of zero velocity at  the walls require 

all./ax = 0 at y = 0,1,  

a$& = 0 at y = 0 , l .  
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We shall seek a solution in the form of an expansion 

m = l  v - 0  

where m and v run over integer values. The yim will be chosen to satisfy the 
boundary conditions (2.5), namely 

Ilr,(y) E cos (m - 1) 7ry - cos (m + 1) 7ry. (2.7) 

These functions form a complete but not an orthogonal set; their analytical 
character makes such a choice convenient from the point of view of computation. 
The x dependence is taken to be harmonic in order that the solution remain 
bounded as $3 00. To account for all possible interactions one should really 
replace the sum over v by a continuous spectrum. However, one expects the 
discrete harmonics to dominate since if a given single harmonic a is excited then 
only integer multiples of a will occur. Note further that since the non-linearity 
is of second order (see right-hand side of (2.1)) the dominant harmonics will 
probably be v = 0 and 2. This should be verified by computation, of course. 

The Galerkin solution procedure proceeds by substituting (2.6) into (2.1) 
and multiplying the result by cos sax+,.(y) and s i n s a ~ $ ~ ( y )  respectively. 
Integrating over the channel height, h, and streamwise wavelength of the funda- 
mental harmonic, 2n/a, gives a system of non-linear, ordinary differential 
equations in time for the unknown functions, A,, and B,. These have the 
form 

~ D i ~ , ~  =~-AmvD2&-BB, , ,D3&++~~+[QAl$?gnA,Bnu 
m m u s m n  

+CBB;~nB,sBn,] (r = 1,2, ..., v = 0,1,2,  ...). 

The various coefficients are given in the appendix. Equations (2.8) are solved by 
numerical integration in time. Initial conditions must be specified of course; 
however, in the present physical context it is the long time solution which is 
of interest and hence the precise nature of the initial conditions is not crucial. 
More will be said of this later. 

3. Some analytical results 
3.1. Linear theory 

From elementary considerations we may divide the equations of motion into 
symmetric and antisymmetric y modes. It will be desirable to introduce the 
following nomenclature: 1, 3, 6 ,  7 ,  ,.. are antisymmetric or odd modes; 
2, 4, 6, 8, . . . are symmetric or even modes. Note that the odd modes are anti- 
symmetric in the velocity, a+/ay, but symmetric in + and a$/ax, see (2.6) 
and (2.7). Similarly the even modes are symmetric in a$/ay but antisymmetric 
in +and a$/ax. Hence the symmetry or antisymmetry is with respect to velocity, 
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not stream function. It will be important to keep this distinction in mind. 
Further, as is well known, it is an odd mode which is unstable in the linear theory, 
not an even one as might be expected intuitively. 

Again, from elementary considerations each harmonic, 0, a, 2a, etc., is 
independent in the linear theory. Indeed one of the goals of linear theory is to 
determine the harmonic which gives the smallest Reynolds number at  which the 
flow is unstable. 

Finally in this section we attempt to further motivate the choice of functions, 
$,n(y). We shall show that the functions selected are closely related to the eigen- 
functions for a = 0. For a = 0 or equivalently, a/ax zz 0, and a linear analysis, 
(2.1) may be reduced to 

Assuming a solution of the form 

we have an eigenvalue problem of the form 

where sis the eigenvalue. Equation (3.3) isreadiIy solved subject to the boundary 
conditions (2.5) and the eigenvalues and eigenfunctions obtained. They are 

(2mn)2 -- , m = l ,  ..., (2742 (4n)2 s2,=--- -~ R ’ R ’ ” * ’  R 
where the eigenfunction is 

qzrn = 1 - cos 2m7ry 

and 

(3.4) 

where 

(3.6) and (3.7) are approximate. The exact eigenvalues satisfy the transcen- 
dental equation 

with the eigenfunction satisfying 

$(2,-1) z 1 - cos (2m - 1 ) n-y; 13-71 

( - 8, R)* sin ( - X, R)* + 2 cos ( - 8, R)j = 2, (3.8) 

1 - cos A, A,[l-cosA,] 
+ m =  ( sin A, - A, sin A, y + cos A, y - sin A, - A, Y - l ] ,  

where A, = ( - 8, R)*. 

Note that (3.4) and (3.5) satisfy (3.8) and (3.9) exactly. The similarity of the 
eigenfunctions (3.51, (3.7) and (3.9) to our somewhat simpler modes of (2.7) 
is apparent. Note that for a = 0 the eigenvalues, X,, are all real and negative for 
all R and hence represent monotonically decaying motion with no oscillations. 
Of course, they all approach zero as R approaches infinity. 
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3.2.  Non-linear theory 
In the non-linear theory, in general, the symmetric and antisymmetric y modes 
are coupled and all streamwise harmonics are coupled. However, certain special 
analytical properties still hold which lend insight into the physical process and 
these will be discussed here. 

First of all, with regard to the y modes, we shall show the following. (i) If 
only odd modes are retained in the analysis, the non-linear terms are identically 
zero. Recall that unstable modes are odd according to the linear theory. (ii) If 
both even and odd modes are retained, the (unstable) odd modes will parametric- 
ally excite the even modes even if the initial conditions on the even modes are 
identically zero. (iii) However, if the initial conditions on the odd modes are 
identically zero, they will never be excited. (iv) There will be non-linear coupling 
among the even modes, even if no odd modes are retained. From the above it 
is clear that even and odd modes have a basically different character in the non- 
linear theory. 

Note that, if E and F or G1, G2 ,G3  are zero, then, from the formulae given 
in the appendix, CAR, CBA, CAA, CRA are zero and hence non-linear terms 
vanish from (2.8). For brevity the subscripts are omitted here. 

Thus in order to prove the above statements it is sufficient to demonstrate 
that the coefficients, Glijk etc. (see appendix) have the following properties. 

If i and j are even, then: (a) k odd implies Glijk etc. are zero; (b )  k even 
implies Glijik etc. are not zero. If i a n d j  are odd, then: (c) k odd implies Glgjk 
etc. are zero; ( d )  k even implies Glijk etc. are not zero. Therefore (i) follows 
from (c), (ii) follows from (d ) ,  (iii) follows from (a) and (c) ,  (iv) follows from ( b ) .  

The properties (a),  (b ) ,  ( c ) ,  ( d )  may be verified by examining the definitions 
of GIijk etc. in the appendix and considering the symmetry and antisymmetry 
of the modal functions, $m(y),  and their derivatives. 

Secondly, with regard to the streamwise harmonics, there is no non-linear 
coupling if only a single harmonic, a, is retained. Hence a minimum of two 
harmonics is required to obtain a non-trivial non-linear effect. In  order to show 
this one need only demonstrate that El,, = PI,, = 0. This is readily done using 
the formulae of the appendix. 
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4. Numerical results 4.1. Linear theory 

A series of calculations was made with the non-linear terms deleted to verify 
that the proposed method could reproduce the known results for the linear prob- 
lem. Thomas’s (1953) results will be taken as a standard by which the present 
method may be assessed. The numerical results are obtained in the form of time 
histories of the functions, A,, and Rmn. A typical result for A,, is shown in 
figure 2. For this example the flow is unstable and a slowly increasing exponential, 
oscillatory growth is observed after the initial transient has been passed, i.e. 
roughly for t > 50. From such time histories the growth rate, S,, and frequency, 
S,, may be determined by fitting the time history with a normalized curve 

e-Sd sin S, t . 



- 

Mean velocity profile 

An important question in the use of the Galerkin method is the number of 
modes required for convergence. In  figures 3 and 4, 8, and 8, are plotted us. 
the number of y modes. Also shown are Thomas’s (1 953) results for the first odd 
mode using 100 finite-difference points. As may be seen, approximately 40 
modes are required for good convergence. A 48-mode solution requires approxi- 
mately 5 min on an IBM 360-67 computer. 

for a range of Reynolds 
number and a = 2. Twenty-odd modes (equivalent to 40 in figures 3 and 4) 
were used. Again the results agree very well with those of Thomas. Finally, in 
figures 7 and 8 similar results for a range of a and R = 80,000 are given. 

It is important to remark that, for larger R and a, more modes are required 
for convergence and conversely for smaller R and a fewer modes are needed. 
For example, when R = 20,000 only half as many modes are required as for 

In  figures 5 and 6 results are presented for S, and 
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This will permit us to determine the eigenvalue of the most amplified mode, 
S,, S,. Since in the linear theory the even and odd modes are decoupled, this 
may be done for both symmetric and antisymmetric modes. These complex 
eigenvalues, S ,  and S,, may be compared with those of Thomas (also one could 
cornpare with the results of Lin (1955), but these are less accurate). 
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Number of y modes 

FIGURE 3. Convergence study. 
u = 2, R = 80,000. 
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FIGURE 5.  Growth rate ws. Reynolds number. 
dl = 2. 0, Dowell (20 modes); 0, Thomas (50 
points). 
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FIGURE 7. Growth rate vs. wave-number. R = 
80,000. 0, Dowell (20 modes); 0, Thomas 
(50 points). 
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FIGURE 4. Convergence study. 
u = 2, R = 80,000. 
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FIGURE 6. Frequency ws. Reynolds number. 
a = 2. 0, Dowell (20 modes) ; 0, Thomas (50 
points). 
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R = 80,000, and, of course, for a = 0 only one mode is needed, see Q 3. Unfortun- 
ately the flow is stable for R = 20,000 and/or a = 0. 

It is clear that the method can be used to obtain the results of linear theory in 
a satisfactory manner. 

4.2. Non-linear theory 

When the non-linear terms are retained, the exponential growth of an unstable 
flow does not continue indefinitely, but instead the flow reaches asymptotically 
some finite amplitude determined by a balance between the linear and non- 
linear terms. 

0 . 4 ~  lo-' I I 

-0'4 t 
0 

-0.6 L 1 I I I 
0 50 100 150 200 250 

t 

FIGURE 9. Time history of Grst mode, first 
harmonic. N = 1, M = 16, R = 80,000, 
a = 2. -, non-linear; 0, linear. 

-0.1 I I I 1 I I I 
0 50 100 150 100 250 300 

t 

FIGURE 10. Time history of second mode, zeroth 
harmonic. N = 1, M = 16, R = 80,000, a = 2. 
-, non-linear; 0, linear. 

One may estimate the limit cycle amplitude from an order-of-magnitude 
analysis which equates the linear and non-linear terms of (2.1) or (2.8). The result 
is  

for R = 80,000, @ N This rough estimate was used to select initial con- 
ditions which would be near the final limit cycle so that the initial transient 
would be as short as possible. 

After a few preliminary runs it became clear that it would not be practical 
to retain a sufficient number of modes to ensure convergence. Thus the cal- 
culations reported here for the non-linear problem are of a qualitative character. 
A Reynolds number of R = 80,000 and wave-number of a = 2 were chosen. 
Sixteen y modes and two harmonics, v = 0 and 1, were retained, for a total of 
32 degrees of freedom. Results for two modal functions, A,, and AZ0, are given 
in figures 9 and 10. We also indicate the results from linear theory for the same 
initial conditions. The results are quite different. The linear theory would give 
A,, = 0 and A,, an exponentially increasing oscillation. The non-linear theory 
shows that A,, is excited by non-linear coupling and A,, has a constant ampli- 

@ - A 2 n 3 / ~ ,  (4.1) 
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tude, oscillatory behaviour due to non-linear stabilization. It is interesting to 
note that the amplitude of A,, (not shown) is approximately 5 x and that 
of A,, approximately 0.1 x Hence the primary response is in the odd, 
first harmonic and even zeroth harmonic. Note the difference in time dependence 
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FIGURE 11. (a) Velocity time history; R = 80,000, a = 2, M = 16, N = 1, y = 0.75; 
( b )  velocity time history; R = 80,000, a = 2, M = 16, N = 1, y = 0.5; (c) velocity time 
history; R = 80,000, a = 2, M = 16, N = 1, y = 0.25. 

of these dominant modes. A,, is nearly constant with time while A,, is sinusoidal. 
Hence the change in the mean flow will be a symmetrical one while the fluctuating 
changes will be antisymmetrical. 

To put the results in somewhat more physical terms we show the time histories 
of the streamwise velocity for various positions across the channel in figure 
11 (a)-(c). Here the perturbation velocity, u, is non-dimensionalized by the mid- 
channel mean velocity, V,,, = i V .  One may see from these results that the mean 
flow profile will be somewhat symmetrically blunted from its original stable 
(laminar) profile. However, the quantitative effect is small. Presumably it would 
increase as the Reynolds number increases. Note again the oscillatory part of 
the velocity perturbation is antisymmetric. 
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Although the number of modes is too small for quantitative accuracy, it is 
thought the results are qualitatively significant; in particular (i) the parametric 
excitation of even modes by odd modes, (ii) the steady behaviour of even modes 
and oscillatory behaviour of odd ones are thought to be intrinsic to the problem 
whatever the number of modes, 

From results using various (smaller) modal combinations it is thought that the 
quantitative effect of additional modes will be to reduce the over-all amplitude of 
the response. 

The results reported here took approximately 2 h on an IBM 360-67 computer. 

t- 
4 m 

- 
r( -’ 

‘“1 

0 
0,0045 0.0225 0.045 0.09 

A,, at T =  0 

FIUTJRE 12. Amplitude ratio m. initial amplitude. R = 8000, a = 1, M,, = 8. 

Finally a brief study was made to see whether a large initial disturbance 
destabilizes a flowwhich is stable withrespect to small (infinitesimal) disturbances. 
According to the linear theory the flow is stable for a = 1 and R = 8000. An 
investigation of decay us. initial amplitude gave the results shown in figure 12. 
The ratio of amplitude at  the initial instant, A,, at r = 0, is used to normalize 
the amplitude one cycle later, A,, at T = 100. Although in all cases the oscilla- 
tion decays, the decay is less-i.e. the amplitude ratio is larger-as the initial 
amplitude increases. For large initial amplitude, the amplitude ratio appears 
to approach an asymptote which is less than one. Incidentally there is very little 
change in the frequency of oscillation with initial amplitude. Also eight modes 
give suflicient convergence for this a and R. 

Hence it may be concluded that in this particular case the flow remains stable 
for large initial amplitudes but is less so than for small ones. It should be noted 
that Meksyn & Stuart (1951) have concluded that for some R and a the flow may 
be destabilized by large initial disturbances. 

I n  general one should not expect the limit cycle to be unique and it is of interest 
to examine a variety of initial conditions. We hope to do this in future work and 
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also to extend the solutions to larger numbers of modes. The initial conditions 
chosen were on the basis of a gross estimate of the amplitude from order-of- 
magnitude considerations and the distribution of modal amplitudes was chosen 
on the basis of linear theory results. 

The numerical integration technique used was one of the standard finite- 
difference formulae. The only precaution taken was to require that the time 
increment was sufficiently small to ensure numerical stability for the highest- 
frequency (shortest period) mode. In  practice this imposes no essential restric- 
tion as the time interval necessary to ensure good definition of the oscillations is 
shorter than this. A typical time interval was AT = 0.2-t 1.0. 

5. Conclusions 
From the results obtained here it is clear that the treatment of non-linear 

limit cycle oscillations of viscous flows is feasible. However, computations for a 
practical range of parameters will require advances in computer technology of 
perhaps a factor of 10 in computation speed. There is a possibility of reducing the 
amount of computation required by combining Galerkin’s method with an 
eigenfunction expansion. One could first use the Galerkin method for the linear 
problem to compute the eigenfunctions in terms of the primitive modes for 
arbitrary R and a. Then the non-linear problem could be treated by an expansion 
in terms of these eigenfunctions which would presumably reduce the number 
of modes required for the non-linear problem. That is, an expansion in terms of 
eigenfunctions would be more rapidly convergent than the one used here in 
terms of primitive modes. This possibility remains to be investigated. 

Among the interesting qualitative features shown to date for plane Poiseuille 
flow are: (i) the parametric excitation of even modes (stable in the linear theory) 
by odd modes (unstable in the linear theory); (ii) the steady time dependence of 
even modes contrasted with the oscillatory behaviour of odd modes. 

A brief study was made to investigate whether, for small Reynolds number 
where linear theory predicts a stable flow, the flow may be made unstable by a 
sufficiently large initial disturbance. A preliminary investigation of this possi- 
bility gave negative results. That is, while the decay was decreased with larger 
initial disturbances, the flow was stable with respect to large disturbances if i t  
was stable with respect to small ones. 

Finally, a word may be said about three-dimensional effects. Three-dimension- 
ality offers no problem in terms of formulation (or computation for the linear 
theory). However, for the non-linear theory, three-dimensional computations 
would not appear to be feasible at present. Hence the present work was res- 
tricted to the two-dimensional case. 

This work was supported by NASA grants NGR31-001-059 and NGR31- 
001-146. 
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Appendix 
DILr ( V C Y , ) ~ C ~ ~ ~ - C ~ ~ , , ,  

cl,nr - 2(va)2C2,,,+ ("")4C3mr 
R D2& = ? 

D3k EZ ( vcY , )~  C4, - (va) C5,, - 2(va) C3,,, 

where 

[( - 1)k- l ] / ( I ~ n ) ~  for k i 0, 
for k = 0, 

J 2 i j  = y2cos iny cos jnydy = 4[12(d+,) + 12(t-j)], 1: 
{ 2( - l)k/(kn)2 for k =i= 0, 
- 3 for k = 0. 

f2 ,  = 1: y2cosknydy = 
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Kij  E sin iny cosjny dy s,' 
= [ i / ( i2  - j z ) ]  [ I  - (- l)i+i]/n for i $. aj ,  
= O  for i = +j. 
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FIGURE 1. The development of layers in a stratified brine solution subject to heating 
through a vertical side-wall. The screws, seen as distinct horizontal bars in the vertical 
Perspex wall, are 5 ern apart. The initial density gradient in the brine is 8 x 
The photographs were taken a t  the following times after a 100watt light was first 
switched on 23 em from the side wall: (a) 16 min, (6) 19-5 min, (c) 21.75 min, (d) 24 rnin, 
( e )  28.25 min. 
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FIGURE 8. The cells formed at  thc onset of 
instability in the slot experiments. The 
initial density gmdieiit due to salinity is 
4.46 x 10-3 g cm-* and the temperature 
difference across the slot is 4.2 "C. The hot 
bath is to the right and the cold bath to 
the left. The scale is in em. 
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